A Method for Characterizing Communities in Dynamic Attributed Complex Networks

Günce Keziban Orman 1, 2 Vincent Labatut 2 Marc Plantevit 1 Jean-François Boulicaut 1
1 DM2L - Data Mining and Machine Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Many methods have been proposed to detect communities, not only in plain, but also in attributed, directed or even dynamic complex networks. In its simplest form, a community structure takes the form of a partition of the node set. From the modeling point of view, to be of some utility, this partition must then be characterized relatively to the properties of the studied system. However, if most of the existing works focus on defining methods for the detection of communities, only very few try to tackle this interpretation problem. Moreover, the existing approaches are limited either in the type of data they handle, or by the nature of the results they output. In this work, we propose a method to efficiently support such a characterization task. We first define a sequence-based representation of networks, combining temporal information, topological measures, and nodal attributes. We then describe how to identify the most emerging sequential patterns of this dataset, and use them to characterize the communities. We also show how to detect unusual behavior in a community, and highlight outliers. Finally, as an illustration, we apply our method to a network of scientific collaborations.
Type de document :
Communication dans un congrès
IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM), Aug 2014, Pékin, China. pp.481-484, 2014, 〈10.1109/ASONAM.2014.6921629〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01011913
Contributeur : Vincent Labatut <>
Soumis le : mercredi 25 juin 2014 - 08:42:59
Dernière modification le : jeudi 19 avril 2018 - 14:38:06
Document(s) archivé(s) le : jeudi 25 septembre 2014 - 10:41:36

Fichiers

asonam.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Günce Keziban Orman, Vincent Labatut, Marc Plantevit, Jean-François Boulicaut. A Method for Characterizing Communities in Dynamic Attributed Complex Networks. IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM), Aug 2014, Pékin, China. pp.481-484, 2014, 〈10.1109/ASONAM.2014.6921629〉. 〈hal-01011913〉

Partager

Métriques

Consultations de la notice

295

Téléchargements de fichiers

341