Fluctuations at the edges of the spectrum of the full rank deformed GUE

Abstract : We consider a full rank deformation of the GUE $W_N+A_N$ where $A_N$ is a full rank Hermitian matrix of size $N$ and $W_N$ is a GUE. The empirical eigenvalue distribution $\mu_{A_N}$ of $A_N$ converges to a probability distribution $\nu$. We identify all the possible limiting eigenvalue statistics at the edges of the spectrum, including outliers, edges and merging points of connected components of the limiting spectrum. The results are stated in terms of a deterministic equivalent of the empirical eigenvalue distribution of $W_N+A_N$, namely the free convolution of the semi-circle distribution and the empirical eigenvalues distribution of $A_N$.
Type de document :
Pré-publication, Document de travail
5 figures, 44 pages. 2014
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01011501
Contributeur : Mireille Capitaine <>
Soumis le : mardi 24 juin 2014 - 09:41:03
Dernière modification le : jeudi 27 avril 2017 - 09:46:20

Identifiants

  • HAL Id : hal-01011501, version 1
  • ARXIV : 1402.2262

Collections

Citation

Mireille Capitaine, S. Péché. Fluctuations at the edges of the spectrum of the full rank deformed GUE. 5 figures, 44 pages. 2014. <hal-01011501>

Partager

Métriques

Consultations de la notice

131