Binary partition tree-based local spectral unmixing

Abstract : The linear mixing model (LMM) is a widely used methodology for the spectral unmixing (SU) of hyperspectral data. In this model, hyperspectral data is formed as a linear combination of spectral signatures corresponding to macroscopically pure materials (endmembers), weighted by their fractional abundances. Some of the drawbacks of the LMM are the presence of multiple mixtures and the spectral variability of the endmembers due to illumination and atmospheric effects. These issues appear as variations of the spectral conditions of the image along its spatial domain. However, these effects are not so severe locally and could be at least mitigated by working in smaller regions of the image. The proposed local SU works over a partition of the image, performing the spectral unmixing locally in each region of the partition. In this work, we first introduce the general local SU methodology, then we propose an implementation of the local SU based on a binary partition tree representation of the hyperspectral image and finally we give an experimental validation of the approach using real data.
Type de document :
Communication dans un congrès
IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS 2014), Jun 2014, Lausanne, Switzerland. pp.n/c, 2014
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01010427
Contributeur : Miguel Angel Veganzones <>
Soumis le : jeudi 19 juin 2014 - 17:03:04
Dernière modification le : mardi 29 mai 2018 - 12:51:06
Document(s) archivé(s) le : vendredi 19 septembre 2014 - 11:27:11

Fichier

whispers2014_lucas.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01010427, version 1

Citation

Lucas Drumetz, Miguel Angel Veganzones, Ruben Marrero, Guillaume Tochon, Mauro Dalla Mura, et al.. Binary partition tree-based local spectral unmixing. IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS 2014), Jun 2014, Lausanne, Switzerland. pp.n/c, 2014. 〈hal-01010427〉

Partager

Métriques

Consultations de la notice

600

Téléchargements de fichiers

247