Optimized PatchMatch for Near Real Time and Accurate Label Fusion

Abstract : Automatic segmentation methods are important tools for quantitative analysis of Magnetic Resonance Images. Recently, patch- based label fusion approaches demonstrated state-of-the-art segmenta- tion accuracy. In this paper, we introduce a new patch-based method using the PatchMatch algorithm to perform segmentation of anatomical structures. Based on an Optimized PAtchMatch Label fusion (OPAL) strategy, the proposed method provides competitive segmentation accu- racy in near real time. During our validation on hippocampus segmenta- tion of 80 healthy subjects, OPAL was compared to several state-of-the- art methods. Results show that OPAL obtained the highest median Dice coefficient (89.3%) in less than 1 sec per subject. These results highlight the excellent performance of OPAL in terms of computation time and segmentation accuracy compared to recently published methods.
Type de document :
Communication dans un congrès
MICCAI 2014, Sep 2014, United States. 8 p., 2014
Liste complète des métadonnées

Contributeur : Vinh-Thong Ta <>
Soumis le : dimanche 15 juin 2014 - 14:50:33
Dernière modification le : lundi 16 juin 2014 - 10:44:06
Document(s) archivé(s) le : lundi 15 septembre 2014 - 10:36:43


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01006329, version 1



Vinh-Thong Ta, Rémi Giraud, D. Louis Collins, Pierrick Coupé. Optimized PatchMatch for Near Real Time and Accurate Label Fusion. MICCAI 2014, Sep 2014, United States. 8 p., 2014. <hal-01006329>



Consultations de
la notice


Téléchargements du document