2D numerical simulation of blade-vortex interaction in a Darrieus turbine - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Fluids Engineering Année : 2009

2D numerical simulation of blade-vortex interaction in a Darrieus turbine

Résumé

The aim of this work is to provide a detailed two-dimensional numerical analysis of the physical phenomena occurring during dynamic stall of a Darrieus wind turbine. The flow is particularly complex because as the turbine rotates, the incidence angle and the blade Reynolds number vary, causing unsteady effects in the flow field. At low tip speed ratio, a deep dynamic stall occurs on blades, leading to large hysteresis lift and drag loops (primary effects). On the other hand, high tip speed ratio corresponds to attached boundary layers on blades (secondary effects). The optimal efficiency occurs in the middle range of the tip speed ratio where primary and secondary effects cohabit. To prove the capacity of the modeling to handle the physics in the whole range of operating condition, it is chosen to consider two tip speed ratios (λ=2 and λ=7), the first in the primary effect region and the second in the secondary effect region. The numerical analysis is performed with an explicit, compressible RANS k-ω code TURBFLOW , in a multiblock structured mesh configuration. The time step and grid refinement sensitivities are examined. Results are compared qualitatively with the visualization of the vortex shedding of Brochier (1986, "Water channel experiments of dynamic stall on Darrieus wind turbine blades," J. Propul. Power, 2(5), pp. 445-449). Hysteresis lift and drag curves are compared with the data of Laneville and Vitecoq (1986, "Dynamic stall: the case of the vertical axis wind turbine," Prog. Aerosp. Sci., 32, pp. 523-573).
Fichier non déposé

Dates et versions

hal-00991137 , version 1 (14-05-2014)

Identifiants

Citer

Ervin Amet, Thierry Maître, Christian Pellone, Jean-Luc Achard. 2D numerical simulation of blade-vortex interaction in a Darrieus turbine. Journal of Fluids Engineering, 2009, 131 (11), pp 111103-1-15. ⟨10.1115/1.4000258⟩. ⟨hal-00991137⟩

Collections

UGA CNRS OSUG LEGI
158 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More