High Spatial Order Finite Element Method to Solve Maxwell's Equations in Time Domain

Sébastien Pernet 1 Xavier Ferrieres Gary Cohen 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : This paper presents a finite element method with high spatial order for solving the Maxwell equations in the time domain. In the first part, we provide the mathematical background of the method. Then, we discuss the advantages of the new scheme compared to a classical finite-difference time-domain (FDTD) method. Several examples show the advantages of using the new method for different kinds of problems. Comparisons in terms of accuracy and CPU time between this method, the FDTD and the finite-volume time-domain methods are given as well.
Document type :
Journal articles
Complete list of metadatas

https://hal-ensta-paris.archives-ouvertes.fr//hal-00982984
Contributor : Aurélien Arnoux <>
Submitted on : Thursday, April 24, 2014 - 3:56:35 PM
Last modification on : Tuesday, July 23, 2019 - 3:42:20 PM

Identifiers

Collections

Citation

Sébastien Pernet, Xavier Ferrieres, Gary Cohen. High Spatial Order Finite Element Method to Solve Maxwell's Equations in Time Domain. IEEE Transactions on Antennas and Propagation, Institute of Electrical and Electronics Engineers, 2005, 53 (9), pp.2889 - 2899. ⟨10.1109/TAP.2005.856046⟩. ⟨hal-00982984⟩

Share

Metrics

Record views

206