A hybrid high-order locking-free method for linear elasticity on general meshes

Abstract : We develop an arbitrary-order locking-free method for linear elasticity on general (polyhedral, possibly nonconforming) meshes without nodal unknowns. The key idea is to reconstruct the relevant differential operators in terms of the (generalized) degrees of freedom by solving an inexpensive local problem inside each element. The symmetric gradient and the divergence operators are reconstructed separately. The divergence operator satisfies a commuting diagram property, yielding robustness in the quasi-incompressible limit. Locking-free error estimates are derived for the energy norm and for the L2-norm of the displacement, with optimal convergence rates for smooth solutions. The theoretical results are confirmed numerically, and the CPU cost is evaluated on both standard and general polygonal meshes.
Type de document :
Article dans une revue
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2015, 283, pp.1-21. 〈10.1016/j.cma.2014.09.009〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00979435
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : mercredi 23 juillet 2014 - 07:34:40
Dernière modification le : mardi 3 juillet 2018 - 11:30:03
Document(s) archivé(s) le : mardi 11 avril 2017 - 16:04:41

Fichier

ep.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Antonio Di Pietro, Alexandre Ern. A hybrid high-order locking-free method for linear elasticity on general meshes. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2015, 283, pp.1-21. 〈10.1016/j.cma.2014.09.009〉. 〈hal-00979435v2〉

Partager

Métriques

Consultations de la notice

627

Téléchargements de fichiers

494