Computation of the band structure of two-dimensional photonic crystals with hp finite elements

Kersten Schmidt 1 Peter Kauf
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : The band structure of 2D photonic crystals -- a periodic material with discontinuous dielectrical properties -- and their eigenmodes can be efficiently computed with the finite element method (FEM). For second order elliptic boundary value problems with piecewise analytic coefficients it is known that the solution converges extremly fast, i.e. exponentially, when using {\em p}-FEM for smooth and {\em hp}-FEM for polygonal interfaces and boundaries. In this article we discretise the variational eigenvalue problems for photonic crystals with smooth and polygonal interfaces in scalar variables with quasi-periodic boundary conditions by means of {\em p}- and {\em hp}-FEM -- this for the transverse electric (TE) and transverse magnetic (TM) modes. Our computations show exponential convergence of the numerical eigenvalues for smooth and polygonal lines of discontinuity of dielectric material properties.
Type de document :
Article dans une revue
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2009, 198, pp.1249-1259
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00974812
Contributeur : Aurélien Arnoux <>
Soumis le : lundi 7 avril 2014 - 14:50:43
Dernière modification le : jeudi 9 février 2017 - 15:28:17

Identifiants

  • HAL Id : hal-00974812, version 1

Collections

Citation

Kersten Schmidt, Peter Kauf. Computation of the band structure of two-dimensional photonic crystals with hp finite elements. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2009, 198, pp.1249-1259. <hal-00974812>

Partager

Métriques

Consultations de la notice

71