Nonparametric estimation of the conditional tail copula

Laurent Gardes 1 Stephane Girard 2
2 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : The tail copula is widely used to describe the dependence in the tail of multivariate distributions. In some situations such as risk management, the dependence structure may be linked with some covariate. The tail copula thus depends on this covariate and is referred to as the conditional tail copula. The aim of this paper is to propose a nonparametric estimator of the conditional tail copula and to establish its asymptotic normality. Some illustrations are presented both on simulated and real datasets.
Type de document :
Article dans une revue
Journal of Multivariate Analysis, Elsevier, 2015, 137, pp.1-16. <10.1016/j.jmva.2015.01.018>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00964514
Contributeur : Laurent Gardes <>
Soumis le : mardi 20 janvier 2015 - 13:28:16
Dernière modification le : mardi 7 mars 2017 - 15:53:25
Document(s) archivé(s) le : vendredi 11 septembre 2015 - 07:45:41

Fichier

CTDC16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Laurent Gardes, Stephane Girard. Nonparametric estimation of the conditional tail copula. Journal of Multivariate Analysis, Elsevier, 2015, 137, pp.1-16. <10.1016/j.jmva.2015.01.018>. <hal-00964514v3>

Partager

Métriques

Consultations de
la notice

508

Téléchargements du document

180