Integrating imperfect transcripts into speech recognition systems for building high-quality corpora

Abstract : The training of state-of-the-art automatic speech recognition (ASR) systems requires huge relevant training corpora. The cost of such databases is high and remains a major limitation for the development of speech-enabled applications in particular contexts (e.g. low-density languages, or specialized domains). On the other hand, a large amount of data can be found in news prompts, movie subtitles or scripts, etc. The use of such data as training corpus could provide a low-cost solution to the acoustic model estimation problem. Unfortunately, prior transcripts are seldom exact with respect to the content of the speech signal, and suffer from a lack of temporal information. This paper tackles the issue of prompt-based speech corpora improvement, by addressing the problems mentioned above. We propose a method allowing to locate accurate transcript segments in speech signals and automatically correct errors or lack of transcript surrounding these segments. This method relies on a new decoding strategy where the search algorithm is driven by the imperfect transcription of the input utterances. The experiments are conducted on the French language, by using the ESTER database and a set of records (and associated prompts) from RTBF (Radio Télévision Belge Francophone). The results demonstrate the effectiveness of the proposed approach, in terms of both error correction and text-to-speech alignment.
Type de document :
Article dans une revue
Computer Speech and Language, Elsevier, 2012, 26 (2), pp.67 - 89
Liste complète des métadonnées

Littérature citée [52 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00953675
Contributeur : Benjamin Lecouteux <>
Soumis le : jeudi 9 novembre 2017 - 09:36:06
Dernière modification le : jeudi 11 octobre 2018 - 08:48:03
Document(s) archivé(s) le : samedi 10 février 2018 - 12:32:14

Fichier

LowCostCorpus.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00953675, version 1

Citation

Benjamin Lecouteux, Georges Linares, Stanislas Oger. Integrating imperfect transcripts into speech recognition systems for building high-quality corpora. Computer Speech and Language, Elsevier, 2012, 26 (2), pp.67 - 89. 〈hal-00953675〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

61