Nonlinear waves in networks: model reduction for sine-Gordon

Abstract : To study how nonlinear waves propagate across Y- and T-type junctions, we consider the 2D sine-Gordon equation as a model and examine the crossing of kinks and breathers. Comparing energies for different geometries reveals that, for small widths, the angle of the fork plays no role. Motivated by this, we introduce a 1D effective model whose solutions agree well with the 2D simulations for kink and breather solutions. These exhibit two different behaviors: a kink crosses if it has sufficient energy; conversely a breather crosses when $v > 1 - omega$, where $v$ and $\omega$ are respectively its velocity and frequency. This methodology can be generalized to more complex nonlinear wave models.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger
Contributeur : Denys Dutykh <>
Soumis le : jeudi 3 novembre 2016 - 11:58:06
Dernière modification le : jeudi 7 février 2019 - 14:20:18
Document(s) archivé(s) le : samedi 4 février 2017 - 12:53:53


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License



Jean-Guy Caputo, Denys Dutykh. Nonlinear waves in networks: model reduction for sine-Gordon. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2014, 90, pp.022912. 〈〉. 〈10.1103/PhysRevE.90.022912〉. 〈hal-00951705v3〉



Consultations de la notice


Téléchargements de fichiers