Nonlinear waves in networks: model reduction for sine-Gordon

Abstract : To study how nonlinear waves propagate across Y- and T-type junctions, we consider the 2D sine-Gordon equation as a model and examine the crossing of kinks and breathers. Comparing energies for different geometries reveals that, for small widths, the angle of the fork plays no role. Motivated by this, we introduce a 1D effective model whose solutions agree well with the 2D simulations for kink and breather solutions. These exhibit two different behaviors: a kink crosses if it has sufficient energy; conversely a breather crosses when $v > 1 - omega$, where $v$ and $\omega$ are respectively its velocity and frequency. This methodology can be generalized to more complex nonlinear wave models.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00951705
Contributeur : Denys Dutykh <>
Soumis le : jeudi 3 novembre 2016 - 11:58:06
Dernière modification le : mercredi 4 octobre 2017 - 01:10:43
Document(s) archivé(s) le : samedi 4 février 2017 - 12:53:53

Fichiers

JGC_DD-2014.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License

Identifiants

Citation

Jean-Guy Caputo, Denys Dutykh. Nonlinear waves in networks: model reduction for sine-Gordon. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2014, 90, pp.022912. 〈http://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.022912〉. 〈10.1103/PhysRevE.90.022912〉. 〈hal-00951705v3〉

Partager

Métriques

Consultations de
la notice

315

Téléchargements du document

47