Convergence of finite volume scheme for degenerate parabolic problem with zero flux boundary condition

Abstract : This note is devoted to the study of the finite volume methods used in the discretization of degenerate parabolic-hyperbolic equation with zero-flux boundary condition. The notion of an entropy-process solution, successfully used for the Dirichlet problem, is insufficient to obtain a uniqueness and convergence result because of a lack of regularity of solutions on the boundary. We infer the uniqueness of an entropy-process solution using the tool of the nonlinear semigroup theory by passing to the new abstract notion of integral-process solution. Then, we prove that numerical solution converges to the unique entropy solution as the mesh size tends to 0.
Type de document :
Communication dans un congrès
J. Fuhrmann, M. Ohlberger and Christian Rohde. Finite Volumes for Complex Applications VII, Jun 2014, Berlin, Germany. Springer, Springer Proceedings in Mathematics and Statistics, 77, pp. 303-311, 2014, Finite Volumes for Complex Applications VII. 〈10.1007/978-3-319-05684-5_29〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00950142
Contributeur : Mohamed Karimou Gazibo <>
Soumis le : dimanche 9 mars 2014 - 11:08:34
Dernière modification le : vendredi 6 juillet 2018 - 15:18:04
Document(s) archivé(s) le : lundi 9 juin 2014 - 10:36:39

Fichiers

fvca7-MGazibo-.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Collections

Citation

Boris Andreïanov, Mohamed Karimou Gazibo. Convergence of finite volume scheme for degenerate parabolic problem with zero flux boundary condition. J. Fuhrmann, M. Ohlberger and Christian Rohde. Finite Volumes for Complex Applications VII, Jun 2014, Berlin, Germany. Springer, Springer Proceedings in Mathematics and Statistics, 77, pp. 303-311, 2014, Finite Volumes for Complex Applications VII. 〈10.1007/978-3-319-05684-5_29〉. 〈hal-00950142v2〉

Partager

Métriques

Consultations de la notice

315

Téléchargements de fichiers

67