Improving classification of an industrial document image database by combining visual and textual features

Abstract : The main contribution of this paper is a new method for classifying document images by combining textual features extracted with the Bag of Words (BoW) technique and visual features extracted with the Bag of Visual Words (BoVW) technique. The BoVW is widely used within the computer vision community for scene classification or object recognition but few applications for the classification of entire document images have been submitted. While previous attempts have been showing disappointing results by combining visual and textual features with the Borda-count technique, we're proposing here a combination through learning approach. Experiments conducted on a 1925 document image industrial database reveal that this fusion scheme significantly improves the classification performances. Our concluding contribution deals with the choosing and tuning of the BoW and/or BoVW techniques in an industrial context.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00946712
Contributeur : Olivier Augereau <>
Soumis le : samedi 1 mars 2014 - 10:23:05
Dernière modification le : vendredi 7 mars 2014 - 14:09:18
Document(s) archivé(s) le : jeudi 29 mai 2014 - 10:55:12

Fichier

bare_conf.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00946712, version 1

Collections

Citation

Olivier Augereau, Nicholas Journet, Anne Vialard, Jean-Philippe Domenger. Improving classification of an industrial document image database by combining visual and textual features. 2013. 〈hal-00946712〉

Partager

Métriques

Consultations de
la notice

535

Téléchargements du document

588