Kleene Algebra with Converse

Abstract : The equational theory generated by all algebras of binary relations with operations of union, composition, converse and reflexive transitive closure was studied by Bernátsky, Bloom, Ésik, and Stefanescu in 1995. We reformulate some of their proofs in syntactic and elementary terms, and we provide a new algorithm to decide the corresponding theory. This algorithm is both simpler and more efficient; it relies on an alternative automata construction, that allows us to prove that the considered equational theory lies in the complexity class PSPACE. Specific regular languages appear at various places in the proofs. Those proofs were made tractable by considering appropriate automata recognising those languages, and exploiting symmetries in those automata.
Type de document :
Communication dans un congrès
RAMiCS, Apr 2014, Marienstatt im Westerwald, Germany. Springer, 8428, pp.101-118, 2014, LNCS
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00938235
Contributeur : Damien Pous <>
Soumis le : mercredi 29 janvier 2014 - 11:09:32
Dernière modification le : mardi 24 avril 2018 - 13:52:48
Document(s) archivé(s) le : dimanche 9 avril 2017 - 02:26:46

Fichier

kac.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00938235, version 1

Collections

Citation

Paul Brunet, Damien Pous. Kleene Algebra with Converse. RAMiCS, Apr 2014, Marienstatt im Westerwald, Germany. Springer, 8428, pp.101-118, 2014, LNCS. 〈hal-00938235〉

Partager

Métriques

Consultations de la notice

335

Téléchargements de fichiers

216