Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial Neural Network

Abstract : This paper presents the building heating demand prediction model with occupancy profile and operational heating power level characteristics in short time horizon (a couple of days) using artificial neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider time dependent attributes of operational power level characteristics and its effect in the overall model performance is outlined. Pseudo dynamic model is applied to a case study of French Institution building and compared its results with static and other pseudo dynamic neural network models. The results show the coefficients of correlation in static and pseudo dynamic neural network model of 0.82 and 0.89 (with energy consumption error of 0.02%) during the learning phase, and 0.61 and 0.85 during the prediction phase respectively. Further, orthogonal array design is applied to the pseudo dynamic model to check the schedule of occupancy profile and operational heating power level characteristics. The results show the new schedule and provide the robust design for pseudo dynamic model. Due to prediction in short time horizon, it finds application for Energy Services Company (ESCOs) to manage the heating load for dynamic control of heat production system.
Document type :
Journal articles
Complete list of metadatas

Cited literature [1 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00916275
Contributor : Olivier Le Corre <>
Submitted on : Thursday, December 12, 2013 - 10:56:21 AM
Last modification on : Wednesday, May 22, 2019 - 2:54:02 PM
Long-term archiving on : Friday, March 14, 2014 - 9:41:31 AM

File

ENB-D-13-00859R2_Sans1eresPage...
Files produced by the author(s)

Identifiers

Collections

Citation

Subodh Paudel, Mohamed Elmtiri, Wil Kling, Olivier Le Corre, Bruno Lacarrière. Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial Neural Network. Energy and Buildings, Elsevier, 2014, 70C, pp. 81-93, S0378-7788(13)00758-5. ⟨10.1016/j.enbuild.2013.11.051⟩. ⟨hal-00916275⟩

Share

Metrics

Record views

557

Files downloads

424