Sur l'exploitation des approches d'analyse en composantes indépendantes dans les interfaces cerveau machine. [On the use of independent component analysis techniques in the field of brain computer interface.]

Abstract : Several studies dealing with brain computer interfaces (BCI) were conducted using the concept of independent components analysis (ICA). Most of these studies only used a reduced number of ICA techniques, mainly the two algorithms FastICA and InfoMax. The main goal of this paper is to present some key points regarding ICA to help BCI researchers not familiar with ICA techniques to select the best appropriate method to tackle the questions understudy. Therefore, the concept of ICA is briefly introduced as well as a short description of algorithms widely used in ICA community, namely SOBI, COM2, JADE, ICAR, FastICA and InfoMax algorithms. The implementation of the ICA technique in the field of the BCI is also reported. Finally, a comparative study of these algorithms, conducted on physiologically plausible simulated EEG data, shows that an appropriate selection of an ICA algorithm can significantly improve the overall capabilities of BCI systems.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00913607
Contributeur : Morgane Le Corre <>
Soumis le : mercredi 4 décembre 2013 - 09:51:22
Dernière modification le : lundi 4 décembre 2017 - 15:14:12

Identifiants

Collections

LTSI | I3S | UNICE

Citation

Lotfi Senhadji, Amar Kachenoura, Laurent Albera, Pierre Comon. Sur l'exploitation des approches d'analyse en composantes indépendantes dans les interfaces cerveau machine. [On the use of independent component analysis techniques in the field of brain computer interface.]. IRBM, Elsevier Masson, 2009, 30 (5-6), pp.211-217. 〈10.1016/j.irbm.2009.10.005〉. 〈hal-00913607〉

Partager

Métriques

Consultations de la notice

160