Vertex Partitions of Graphs into Cographs and Stars

Paul Dorbec 1 Mickael Montassier 2 Pascal Ochem 3
1 Combinatoire et Algorithmique
LaBRI - Laboratoire Bordelais de Recherche en Informatique
3 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : A cograph is a graph that contains no path on four vertices as an induced subgraph. A cograph k-partition of a graph G = (V, E) is a vertex-partition of G into k sets V1 , . . . , Vk ⊂ V so that the graph induced by Vi is a cograph for 1 ≤ i ≤ k. Gimbel and Nešetril [5] studied the complexity aspects of the cograph k-partitions and raised the following questions: Does there exist a triangle-free planar graph that is not cograph 2-partitionable? If the answer is yes, what is the complexity of the associated decision problem? In this paper, we prove that such an example exists and that deciding whether a triangle-free planar graph admits a cograph 2-partition is NP-complete. We also show that every graph with maximum average degree at most 14/5 admits a cograph 2-partition such that each component is a star on at most three vertices.
Type de document :
Article dans une revue
Journal of Graph Theory, Wiley, 2013, 75, pp.75-90. 〈10.1002/jgt.21724〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00911272
Contributeur : Paul Dorbec <>
Soumis le : vendredi 29 novembre 2013 - 09:51:05
Dernière modification le : jeudi 8 novembre 2018 - 15:26:18

Lien texte intégral

Identifiants

Citation

Paul Dorbec, Mickael Montassier, Pascal Ochem. Vertex Partitions of Graphs into Cographs and Stars. Journal of Graph Theory, Wiley, 2013, 75, pp.75-90. 〈10.1002/jgt.21724〉. 〈hal-00911272〉

Partager

Métriques

Consultations de la notice

313