Skip to Main content Skip to Navigation
Journal articles

Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation

Laurent Baratchart 1 Yannick Fischer 2 Juliette Leblond 1
2 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
Abstract : We study Hardy spaces $H^p_\nu$ of the conjugate Beltrami equation $\bar{\partial} f=\nu\bar{\partial f}$ over Dini-smooth finitely connected domains, for real contractive $\nu\in W^{1,r}$ with $r>2$, in the range $r/(r-1)
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00909577
Contributor : Juliette Leblond <>
Submitted on : Tuesday, November 26, 2013 - 2:43:15 PM
Last modification on : Thursday, March 5, 2020 - 7:23:40 PM

Links full text

Identifiers

Collections

Citation

Laurent Baratchart, Yannick Fischer, Juliette Leblond. Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation. Complex Variables and Elliptic Equations, Taylor & Francis, 2014, 41 p. ⟨10.1080/17476933.2012.755755⟩. ⟨hal-00909577⟩

Share

Metrics

Record views

519