Regression algorithm for emotion detection

Franck Berthelon 1 Peter Sander 1
1 WIMMICS - Web-Instrumented Man-Machine Interactions, Communities and Semantics
CRISAM - Inria Sophia Antipolis - Méditerranée , SPARKS - Scalable and Pervasive softwARe and Knowledge Systems
Abstract : We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor measurements of their bodily expressions, using their individual PEMs. The aim of this architecture is to dissociate sensor measurements of bodily expression from the emotion expression interpretation, thus allowing flexibility in the choice of sensors. We test the prototype system using video sequences of facial expressions and demonstrate the real-time capabilities of the system for detecting emotion. We note that, interestingly, the system detects the sort of hysteresis phenomenon in changing emotional state as suggested by Scherer's psychological model.
keyword : emotion regression
Type de document :
Communication dans un congrès
Coginfocom, Dec 2013, Budapest, Hungary. 2013
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00908542
Contributeur : Franck Berthelon <>
Soumis le : dimanche 24 novembre 2013 - 18:04:29
Dernière modification le : lundi 5 octobre 2015 - 17:00:55
Document(s) archivé(s) le : mardi 25 février 2014 - 04:27:04

Fichier

PID2998685.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00908542, version 1

Collections

Citation

Franck Berthelon, Peter Sander. Regression algorithm for emotion detection. Coginfocom, Dec 2013, Budapest, Hungary. 2013. 〈hal-00908542〉

Partager

Métriques

Consultations de
la notice

377

Téléchargements du document

700