Global Sensitivity Analysis with Dependence Measures

Abstract : Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed. We establish that this comparison yields previously proposed indices when it is performed with Csiszar f-divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert-Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in high dimension.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

Littérature citée [64 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00903283
Contributeur : Sébastien Da Veiga <>
Soumis le : lundi 11 novembre 2013 - 12:57:23
Dernière modification le : mardi 15 mai 2018 - 14:50:01
Document(s) archivé(s) le : mercredi 12 février 2014 - 04:29:24

Fichiers

SensitivityWithIndepMeasures.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00903283, version 1
  • ARXIV : 1311.2483

Collections

Citation

Sébastien Da Veiga. Global Sensitivity Analysis with Dependence Measures. 2013. 〈hal-00903283〉

Partager

Métriques

Consultations de la notice

606

Téléchargements de fichiers

1061