Learning Multiple Temporal Matching for Time Series Classification

Abstract : In real applications, time series are generally of complex structure, exhibiting different global behaviors within classes. To discriminate such challenging time series, we propose a multiple temporal matching approach that reveals the commonly shared features within classes, and the most differential ones across classes. For this, we rely on a new framework based on the variance/covariance criterion to strengthen or weaken matched observations according to the induced variability within and between classes. The experiments performed on real and synthetic datasets demonstrate the ability of the multiple temporal matching approach to capture fine-grained distinctions between time series.
Type de document :
Communication dans un congrès
Springer. Intelligent Data Analysis, 2013, London, United Kingdom. pp.198-209, 2013
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00881159
Contributeur : Ahlame Douzal <>
Soumis le : vendredi 22 novembre 2013 - 15:18:15
Dernière modification le : samedi 23 novembre 2013 - 20:07:27
Document(s) archivé(s) le : dimanche 23 février 2014 - 02:55:21

Fichier

Learn-TS-IDA13-Final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00881159, version 1

Collections

LIG | UGA

Citation

Cedric Frambourg, Ahlame Douzal-Chouakria, Eric Gaussier. Learning Multiple Temporal Matching for Time Series Classification. Springer. Intelligent Data Analysis, 2013, London, United Kingdom. pp.198-209, 2013. <hal-00881159>

Partager

Métriques

Consultations de
la notice

175

Téléchargements du document

222