On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra

Abstract : The aim of this paper is to study the tangential trace and tangential components of fields which belong to the space H(curl, Omega), when Omega is a polyhedron with Lipschitz continuous boundary. The appropriate functional setting is developed in order to suitably define these traces on the whole boundary and on a part of it (for partially vanishing fields and general ones.) In both cases it is possible to define ad hoc dualities among tangential trace and tangential components. In addition, the validity of two related integration by parts formulae is provided. Copyright (C) 2001 John Wiley & Sons, Ltd.
Type de document :
Article dans une revue
Mathematical Methods in the Applied Sciences, Wiley, 2001, 24 (1), pp.9-30. <10.1002/1099-1476(20010110)24:1(9::aid-mma191)3.0.co;2-2>
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00878223
Contributeur : Aurélien Arnoux <>
Soumis le : lundi 4 novembre 2013 - 13:53:11
Dernière modification le : jeudi 5 janvier 2017 - 01:53:22

Identifiants

Collections

Citation

Annalisa Buffa, Patrick Ciarlet. On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra. Mathematical Methods in the Applied Sciences, Wiley, 2001, 24 (1), pp.9-30. <10.1002/1099-1476(20010110)24:1(9::aid-mma191)3.0.co;2-2>. <hal-00878223>

Partager

Métriques

Consultations de la notice

159