Regularization in Relevance Learning Vector Quantization Using l one Norms

Abstract : We propose in this contribution a method for l one regularization in prototype based relevance learning vector quantization (LVQ) for sparse relevance profiles. Sparse relevance profiles in hyperspectral data analysis fade down those spectral bands which are not necessary for classification. In particular, we consider the sparsity in the relevance profile enforced by LASSO optimization. The latter one is obtained by a gradient learning scheme using a differentiable parametrized approximation of the $l_{1}$-norm, which has an upper error bound. We extend this regularization idea also to the matrix learning variant of LVQ as the natural generalization of relevance learning.
Type de document :
Communication dans un congrès
21-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), Apr 2013, Bruges, Belgium. pp.17-22, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00874854
Contributeur : Fabrice Rossi <>
Soumis le : vendredi 18 octobre 2013 - 16:57:40
Dernière modification le : vendredi 18 octobre 2013 - 19:00:36

Fichiers

L1_regularization_3_ESANN.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00874854, version 1
  • ARXIV : 1310.5095

Collections

Citation

Martin Riedel, Marika Kästner, Fabrice Rossi, Thomas Villmann. Regularization in Relevance Learning Vector Quantization Using l one Norms. 21-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), Apr 2013, Bruges, Belgium. pp.17-22, 2013. <hal-00874854>

Partager

Métriques

Consultations de
la notice

214

Téléchargements du document

84