Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements

Annalisa Buffa 1 Patrick Ciarlet 2 Erell Jamelot 2
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method required a parameterization of the variational formulation. In order to avoid this difficulty, we use a mixed variational setting instead of the parameterization, which allows us to handle the divergence-free constraint on the field in a straightforward manner. The numerical analysis of the method is carried out, and numerical examples are provided to show the efficiency of our approach. © Springer-Verlag 2009.
Type de document :
Article dans une revue
Numerische Mathematik, Springer Verlag, 2009, 113 (4), pp.497-518. <10.1007/s00211-009-0246-2>
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00873069
Contributeur : Aurélien Arnoux <>
Soumis le : mercredi 16 octobre 2013 - 15:07:51
Dernière modification le : jeudi 9 février 2017 - 15:47:47

Identifiants

Collections

Citation

Annalisa Buffa, Patrick Ciarlet, Erell Jamelot. Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. Numerische Mathematik, Springer Verlag, 2009, 113 (4), pp.497-518. <10.1007/s00211-009-0246-2>. <hal-00873069>

Partager

Métriques

Consultations de la notice

155