Optimal Bit Complexity Randomised Distributed MIS and Maximal Matching Algorithms for Anonymous Rings

Abstract : We present and analyse Las Vegas distributed algorithms which compute a MIS or a maximal matching for anonymous rings. Their bit complexity and time complexity are $O(\sqrt{\log n})$ with high probability. These algorithms are optimal modulo a multiplicative constant. Beyond the complexity results, the interest of this work stands in the description and the analysis of these algorithms which may be easily generalised. Furthermore, these results show a separation between the complexity of the MIS problem (and of the maximal matching problem) on the one hand and the colouring problem on the other. Colouring can be computed only in $\Omega(\log n)$ rounds on rings with high probability, while MIS is shown to have a faster algorithm. This is in contrast to other models, in which MIS is at least as hard as colouring.
Type de document :
Article dans une revue
Information and Computation, Elsevier, 2013, 233, pp.32-40
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00871822
Contributeur : Yves Métivier <>
Soumis le : jeudi 10 octobre 2013 - 16:24:27
Dernière modification le : mardi 11 mars 2014 - 14:30:24

Identifiants

  • HAL Id : hal-00871822, version 1

Collections

Citation

Allyx Fontaine, Yves Métivier, John Michael Robson, Akka Zemmari. Optimal Bit Complexity Randomised Distributed MIS and Maximal Matching Algorithms for Anonymous Rings. Information and Computation, Elsevier, 2013, 233, pp.32-40. 〈hal-00871822〉

Partager

Métriques

Consultations de la notice

133