A New C-Xyloside induces modifications of GAG expression, structure and functional properties. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue PLoS ONE Année : 2012

A New C-Xyloside induces modifications of GAG expression, structure and functional properties.

Emilie Vassal-Stermann
  • Fonction : Auteur
Albert Duranton
  • Fonction : Auteur
Annie F Black
  • Fonction : Auteur
Gayane Azadiguian
  • Fonction : Auteur
Julien Demaude
  • Fonction : Auteur
Hugues Lortat-Jacob
  • Fonction : Auteur
  • PersonId : 970500
Lionel Breton
  • Fonction : Auteur
Romain R Vivès

Résumé

Proteoglycans (PGs) are critically involved in major cellular processes. Most PG activities are due to the large interactive properties of their glycosaminoglycan (GAG) polysaccharide chains, whose expression and fine structural features are tightly controlled by a complex and highly regulated biosynthesis machinery. Xylosides are known to bypass PG-associated GAG biosynthesis and prime the assembly of free polysaccharide chains. These are, therefore, attractive molecules to interfere with GAG expression and function. Recently, we have developed a new xyloside derivative, C-Xyloside, that shares classical GAG-inducing xyloside activities while exhibiting improved metabolic stability. We have previously shown that C-Xyloside had beneficial effects on skin homoeostasis/regeneration using a number of models, but its precise effects on GAG expression and fine structure remained to be addressed. In this study, we have therefore investigated this in details, using a reconstructed dermal tissue as model. Our results first confirmed that C-Xyloside strongly enhanced synthesis of GAG chains, but also induced significant changes in their structure. C-Xyloside primed GAGs were exclusively chondroitin/dermatan sulfate (CS/DS) that featured reduced chain size, increased O-sulfation, and changes in iduronate content and distribution. Surprisingly, C-Xyloside also affected PG-borne GAGs, the main difference being observed in CS/DS 4-O/6-O-sulfation ratio. Such changes were found to affect the biological properties of CS/DS, as revealed by the significant reduction in binding to Hepatocyte Growth Factor observed upon C-Xyloside treatment. Overall, this study provides new insights into the effect of C-Xyloside on GAG structure and activities, which opens up perspectives and applications of such compound in skin repair/regeneration. It also provides a new illustration about the use of xylosides as tools for modifying GAG fine structure/function relationships.

Dates et versions

hal-00871190 , version 1 (09-10-2013)

Identifiants

Citer

Emilie Vassal-Stermann, Albert Duranton, Annie F Black, Gayane Azadiguian, Julien Demaude, et al.. A New C-Xyloside induces modifications of GAG expression, structure and functional properties.. PLoS ONE, 2012, 7 (10), pp.e47933. ⟨10.1371/journal.pone.0047933⟩. ⟨hal-00871190⟩
82 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More