A discrete duality finite volume method for elliptic problems with corner singularities

Sarah Delcourte 1
1 MMCS - Modélisation mathématique, calcul scientifique
ICJ - Institut Camille Jordan [Villeurbanne]
Abstract : We focus on the Discrete Duality Finite Volume (DDFV) method whose particularity is to allow the use of unstructured or nonconforming meshes. We deal with the Laplacian problem on nonconvex domains. We show how appropriate refinement conditions on the diamond mesh lead to an optimal order of convergence as for smooth solutions. These theoretical results are illustrated by some numerical applications.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [15 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00868421
Contributor : Sarah Delcourte <>
Submitted on : Monday, February 9, 2015 - 12:22:12 PM
Last modification on : Friday, October 26, 2018 - 10:45:56 AM
Document(s) archivé(s) le : Saturday, September 12, 2015 - 9:56:30 AM

File

IJFVdelcourte_09.pdf
Explicit agreement for this submission

Identifiers

  • HAL Id : hal-00868421, version 1

Citation

Sarah Delcourte. A discrete duality finite volume method for elliptic problems with corner singularities. International Journal on Finite Volumes, Institut de Mathématiques de Marseille, AMU, 2009, 6 (1), http://www.latp.univ-mrs.fr/IJFV/spip.php?article26. ⟨hal-00868421⟩

Share

Metrics

Record views

265

Files downloads

70