A Structure result for bricks in Heisenberg groups

Abstract : We show that for a sufficiently big \textit{brick} $B$ of the $(2n+1)$-dimensional Heisenberg group $H_n$ over the finite field $\mathbb{F}_p$, the product set $B\cdot B$ contains at least $|B|/p$ many cosets of some non trivial subgroup of $H_n$.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00868107
Contributor : François Hennecart <>
Submitted on : Tuesday, October 1, 2013 - 10:04:19 AM
Last modification on : Wednesday, December 12, 2018 - 3:27:54 PM

Links full text

Identifiers

  • HAL Id : hal-00868107, version 1
  • ARXIV : 1309.7579

Citation

Norbert Hegyvári, François Hennecart. A Structure result for bricks in Heisenberg groups. Journal of Number Theory, Elsevier, 2013, 133, pp.2999-3006. ⟨hal-00868107⟩

Share

Metrics

Record views

234