Skip to Main content Skip to Navigation
Conference papers

Multi-dimensional sparse structured signal approximation using split bregman iterations

Yoann Isaac 1, 2, 3 Quentin Barthélemy 4, 3 Cedric Gouy-Pailler 3 Jamal Atif 1, 2 Michèle Sebag 1, 2
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
3 LADIS - Laboratoire d'analyse des données et d'intelligence des systèmes
DM2I - Département Métrologie Instrumentation & Information : DRT/LIST/DM2I
Abstract : The paper focuses on the sparse approximation of signals using overcomplete representations, such that it preserves the (prior) structure of multi-dimensional signals. The underlying optimization problem is tackled using a multi-dimensional extension of the split Bregman optimization approach. An extensive empirical evaluation shows how the proposed approach compares to the state of the art depending on the signal features.
Complete list of metadatas

Cited literature [24 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00862645
Contributor : Jamal Atif <>
Submitted on : Tuesday, April 30, 2019 - 4:44:24 PM
Last modification on : Tuesday, April 21, 2020 - 1:12:03 AM

File

article_Yoann Isaac.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00862645, version 1

Citation

Yoann Isaac, Quentin Barthélemy, Cedric Gouy-Pailler, Jamal Atif, Michèle Sebag. Multi-dimensional sparse structured signal approximation using split bregman iterations. 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), May 2013, Vancouver, Canada. pp.3826-3830. ⟨hal-00862645⟩

Share

Metrics

Record views

706

Files downloads

118