Skip to Main content Skip to Navigation
Conference papers

Multi-dimensional sparse structured signal approximation using split bregman iterations

Yoann Isaac 1, 2, 3 Quentin Barthélemy 4, 3 Cedric Gouy-Pailler 3 Jamal Atif 1, 2 Michèle Sebag 1, 2
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
3 LADIS - Laboratoire d'analyse des données et d'intelligence des systèmes
DM2I - Département Métrologie Instrumentation & Information : DRT/LIST/DM2I
Abstract : The paper focuses on the sparse approximation of signals using overcomplete representations, such that it preserves the (prior) structure of multi-dimensional signals. The underlying optimization problem is tackled using a multi-dimensional extension of the split Bregman optimization approach. An extensive empirical evaluation shows how the proposed approach compares to the state of the art depending on the signal features.
Complete list of metadata

Cited literature [24 references]  Display  Hide  Download
Contributor : Jamal Atif <>
Submitted on : Tuesday, April 30, 2019 - 4:44:24 PM
Last modification on : Saturday, May 1, 2021 - 3:40:02 AM


article_Yoann Isaac.pdf
Files produced by the author(s)


  • HAL Id : hal-00862645, version 1


Yoann Isaac, Quentin Barthélemy, Cedric Gouy-Pailler, Jamal Atif, Michèle Sebag. Multi-dimensional sparse structured signal approximation using split bregman iterations. ICASSP 2013 - 38th IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, Vancouver, Canada. pp.3826-3830. ⟨hal-00862645⟩



Record views


Files downloads