Quality evaluation of degraded document images for binarization result prediction

Abstract : This article proposes an approach to predict the result of binarization algorithms on a given docu- ment image according to its state of degradation. In- deed, historical documents suffer from different types of degradation which result in binarization errors. We intend to characterize the degradation of a document image by using different features based on the inten- sity, quantity and location of the degradation. These features allow us to build prediction models of bina- rization algorithms that are very accurate according to R2 values and p-values. The prediction models are used to select the best binarization algorithm for a given doc- ument image. Obviously, this image-by-image strategy improves the binarization of the entire dataset.
Type de document :
Article dans une revue
International Journal on Document Analysis and Recognition (IJDAR), 2013, pp.1--13. <10.1007/s10032-013-0211-6>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00862234
Contributeur : Vincent Rabeux <>
Soumis le : lundi 16 septembre 2013 - 11:51:39
Dernière modification le : mardi 17 septembre 2013 - 09:15:04
Document(s) archivé(s) le : jeudi 6 avril 2017 - 20:54:03

Fichier

ijdar.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Rabeux, Nicholas Journet, Anne Vialard, Jean-Philippe Domenger. Quality evaluation of degraded document images for binarization result prediction. International Journal on Document Analysis and Recognition (IJDAR), 2013, pp.1--13. <10.1007/s10032-013-0211-6>. <hal-00862234>

Partager

Métriques

Consultations de
la notice

199

Téléchargements du document

299