Polynomial configurations in the primes

Abstract : The Bergelson-Leibman theorem states that if P_1, ..., P_k are polynomials with integer coefficients, then any subset of the integers of positive upper density contains a polynomial configuration x+P_1(m), ..., x+P_k(m), where x,m are integers. Various generalizations of this theorem are known. Wooley and Ziegler showed that the variable m can in fact be taken to be a prime minus 1, and Tao and Ziegler showed that the Bergelson-Leibman theorem holds for subsets of the primes of positive relative upper density. Here we prove a hybrid of the latter two results, namely that the step m in the Tao-Ziegler theorem can be restricted to the set of primes minus 1.
Type de document :
Article dans une revue
International Mathematics Research Notices, Oxford University Press (OUP), 2013, 2013, in press
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00856932
Contributeur : Carole Juppin <>
Soumis le : lundi 2 septembre 2013 - 16:33:31
Dernière modification le : jeudi 10 mai 2018 - 01:57:11

Lien texte intégral

Identifiants

  • HAL Id : hal-00856932, version 1
  • ARXIV : 1210.4659

Collections

Citation

Thai Hoang Le, Julia Wolf. Polynomial configurations in the primes. International Mathematics Research Notices, Oxford University Press (OUP), 2013, 2013, in press. 〈hal-00856932〉

Partager

Métriques

Consultations de la notice

192