Iterative Algorithms

Abstract : The present chapter surveys computational algorithms for solving the independent component analysis (ICA) problem. Most of these algorithms rely on gradient or Newton iterations for contrast function maximization, and can work either in batch or adaptive processing mode. After briefly summarizing the common tools employed in their design and analysis, the chapter reviews a variety of iterative techniques ranging from pioneering neural network approaches and relative (or natural) gradient methods to Newton-like fixed-point algorithms as well as methods based on some form of optimal step-size coefficient.
Type de document :
Chapitre d'ouvrage
Pierre Comon, Christian Jutten. Handbook of Blind Source Separation, Independent Component Analysis and Applications, Academic Press, pp.179-225, 2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00848622
Contributeur : Vicente Zarzoso <>
Soumis le : vendredi 26 juillet 2013 - 16:24:03
Dernière modification le : lundi 4 décembre 2017 - 15:14:12

Identifiants

  • HAL Id : hal-00848622, version 1

Collections

Citation

Vicente Zarzoso, Hyvärinen Aapo. Iterative Algorithms. Pierre Comon, Christian Jutten. Handbook of Blind Source Separation, Independent Component Analysis and Applications, Academic Press, pp.179-225, 2010. 〈hal-00848622〉

Partager

Métriques

Consultations de la notice

152