Independent Component Analysis Based on First-Order Statistics

Abstract : This communication puts forward a novel method for independent source extraction in instantaneous linear mixtures. The method is based on the conditional mean of the whitened observations and requires some prior knowledge of the positive support of the desired source. A theoretical performance analysis yields the closed-form expression of the asymptotic interference-to-signal ratio achieved by this technique. The analysis includes the effects of inaccuracies in the estimation of the positive support of the desired source in single-step and iterative implementations of the algorithm. Numerical experiments validate the fitness of the asymptotic approximations. As it is based on first-order statistics, the method is extremely cost-effective, which makes it an attractive alternative to second- and higher-order statistical techniques in power-limited scenarios.
Type de document :
Article dans une revue
Signal Processing, Elsevier, 2012, 92 (8), pp.1779-1784
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00848550
Contributeur : Vicente Zarzoso <>
Soumis le : vendredi 26 juillet 2013 - 14:21:53
Dernière modification le : lundi 12 septembre 2016 - 10:51:26
Document(s) archivé(s) le : dimanche 27 octobre 2013 - 03:18:27

Fichier

sp12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00848550, version 1

Collections

Citation

Vicente Zarzoso, Rubén Martín-Clemente, Susana Hornillo-Mellado. Independent Component Analysis Based on First-Order Statistics. Signal Processing, Elsevier, 2012, 92 (8), pp.1779-1784. <hal-00848550>

Partager

Métriques

Consultations de
la notice

182

Téléchargements du document

82