Convergence of time dependent Turing structure to a stationary solution

Vitaly Volpert 1 A.G. Ramm 2
1 DRACULA - Multi-scale modelling of cell dynamics : application to hematopoiesis
CGMC - Centre de génétique moléculaire et cellulaire, Inria Grenoble - Rhône-Alpes, ICJ - Institut Camille Jordan [Villeurbanne], UCBL - Université Claude Bernard Lyon 1 : EA
Abstract : Stability of stationary solutions of parabolic equations is conventionally studied by linear stability analysis, Lyapunov functions or lower and upper functions. We discuss here another approach based on differential inequalities written for the L 2 norm of the solution. This method is appropriate for the equations with time dependent coefficients. It yields new results and is applicable when the usual linearization method is not applicable.
Type de document :
Article dans une revue
Acta Applicandae Mathematicae, Springer Verlag, 2013, 123 (1), pp.31-42. <10.1007/s10440-012-9711-5>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00846571
Contributeur : Vitaly Volpert <>
Soumis le : vendredi 19 juillet 2013 - 13:37:12
Dernière modification le : vendredi 18 décembre 2015 - 01:12:52

Identifiants

Collections

Citation

Vitaly Volpert, A.G. Ramm. Convergence of time dependent Turing structure to a stationary solution. Acta Applicandae Mathematicae, Springer Verlag, 2013, 123 (1), pp.31-42. <10.1007/s10440-012-9711-5>. <hal-00846571>

Partager

Métriques

Consultations de la notice

171