A proximal approach for optimization problems involving Kullback divergences

Abstract : Convex optimization problems involving information measures have been extensively investigated in source and channel coding. These measures can also be successfully used in inverse problems encountered in signal and image processing. The related optimization problems are often challenging due to their large size. In this paper, we derive closed-form expressions of the proximity operators of Kullback-Leibler and Jeffreys-Kullback divergences. Building upon these results, we develop an efficient primal-dual proximal approach. This allows us to address a wide range of convex optimization problems whose objective function expression includes one of these divergences. An image registration application serves as an example for illustrating the good performance of the proposed method.
Type de document :
Communication dans un congrès
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2013, Vancouver, Canada. pp.xx-xx, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00842705
Contributeur : Mireille El Gheche <>
Soumis le : mardi 9 juillet 2013 - 11:03:18
Dernière modification le : mardi 9 juillet 2013 - 15:38:22
Document(s) archivé(s) le : jeudi 10 octobre 2013 - 04:09:14

Fichier

Icassp_ELGHECHE.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00842705, version 1

Citation

Mireille El Gheche, Jean-Christophe Pesquet, Farah Joumana. A proximal approach for optimization problems involving Kullback divergences. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2013, Vancouver, Canada. pp.xx-xx, 2013. <hal-00842705>

Partager

Métriques

Consultations de
la notice

206

Téléchargements du document

196