A Bayesian approach for global sensitivity analysis of (multi-fidelity) computer codes

Abstract : Complex computer codes are widely used in science and engineering to model physical phenomena. Furthermore, it is common that they have a large number of input parameters. Global sensitivity analysis aims to identify those which have the most important impact on the output. Sobol indices are a popular tool to perform such analysis. However, their estimations require an important number of simulations and often cannot be processed under reasonable time constraint. To handle this problem, a Gaussian process regression model is built to surrogate the computer code and the Sobol indices are estimated through it. The aim of this paper is to provide a methodology to estimate the Sobol indices through a surrogate model taking into account both the estimation errors and the surrogate model errors. In particular, it allows us to derive non-asymptotic confidence intervals for the Sobol index estimations. Furthermore, we extend the suggested strategy to the case of multi-fidelity computer codes which can be run at different levels of accuracy. For such simulators, we use an extension of Gaussian process regression models for multivariate outputs.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00842432
Contributeur : Loic Le Gratiet <>
Soumis le : lundi 8 juillet 2013 - 15:36:42
Dernière modification le : mardi 11 octobre 2016 - 14:04:55
Document(s) archivé(s) le : mercredi 9 octobre 2013 - 04:23:26

Fichiers

MuFiSensitivity.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00842432, version 1
  • ARXIV : 1307.2223

Collections

Citation

Loic Le Gratiet, Claire Cannamela, Bertrand Iooss. A Bayesian approach for global sensitivity analysis of (multi-fidelity) computer codes. 2013. <hal-00842432>

Partager

Métriques

Consultations de
la notice

290

Téléchargements du document

211