A Bayesian approach for global sensitivity analysis of (multi-fidelity) computer codes

Abstract : Complex computer codes are widely used in science and engineering to model physical phenomena. Furthermore, it is common that they have a large number of input parameters. Global sensitivity analysis aims to identify those which have the most important impact on the output. Sobol indices are a popular tool to perform such analysis. However, their estimations require an important number of simulations and often cannot be processed under reasonable time constraint. To handle this problem, a Gaussian process regression model is built to surrogate the computer code and the Sobol indices are estimated through it. The aim of this paper is to provide a methodology to estimate the Sobol indices through a surrogate model taking into account both the estimation errors and the surrogate model errors. In particular, it allows us to derive non-asymptotic confidence intervals for the Sobol index estimations. Furthermore, we extend the suggested strategy to the case of multi-fidelity computer codes which can be run at different levels of accuracy. For such simulators, we use an extension of Gaussian process regression models for multivariate outputs.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

Contributeur : Loic Le Gratiet <>
Soumis le : lundi 8 juillet 2013 - 15:36:42
Dernière modification le : mardi 6 mars 2018 - 15:58:45
Document(s) archivé(s) le : mercredi 9 octobre 2013 - 04:23:26


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00842432, version 1
  • ARXIV : 1307.2223



Loic Le Gratiet, Claire Cannamela, Bertrand Iooss. A Bayesian approach for global sensitivity analysis of (multi-fidelity) computer codes. 2013. 〈hal-00842432〉



Consultations de la notice


Téléchargements de fichiers