A convex formulation for global histogram based binary segmentation

Abstract : In this paper, we present a general convex formulation for global histogram-based binary segmentation. The model relies on a data term measuring the histograms of the regions to segment w.r.t. reference histograms as well as TV regularization allowing the penalization of the length of the interface between the two regions. The framework is based on some $l^1$ data term, and the obtained functional is minimized with an algorithm adapted to non smooth optimization. We present the functional and the related numerical algorithm and we then discuss the incorporation of color histograms, cumulative histograms or structure tensor histograms. Experiments show the interest of the method for a large range of data including both gray-scale and color images. Comparisons with a local approach based on the Potts model or with a recent one based on Wasserstein distance also show the interest of our method.
Type de document :
Communication dans un congrès
International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug 2013, Sweden. pp.1-14, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00834068
Contributeur : Nicolas Papadakis <>
Soumis le : vendredi 14 juin 2013 - 10:30:42
Dernière modification le : jeudi 26 septembre 2013 - 10:05:20
Document(s) archivé(s) le : dimanche 15 septembre 2013 - 04:10:24

Fichier

hist_based_segm_EMMCVPR13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00834068, version 1

Collections

Citation

Romain Yildizoglu, Jean-François Aujol, Nicolas Papadakis. A convex formulation for global histogram based binary segmentation. International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, Aug 2013, Sweden. pp.1-14, 2013. <hal-00834068>

Partager

Métriques

Consultations de
la notice

395

Téléchargements du document

297