Asymptotic normality of a Sobol index estimator in Gaussian process regression framework

Abstract : Stochastic simulators such as Monte-Carlo estimators are widely used in science and engineering to study physical systems through their probabilistic representation. Global sensitivity analysis aims to identify the input parameters which have the most important impact on the output. A popular tool to perform global sensitivity analysis is the variance-based method which comes from the Hoeffding-Sobol decomposition. Nevertheless, this method requires an important number of simulations and is often unfeasible under reasonable time constraint. Therefore, an approximation of the input/output relation of the code is built with a Gaussian process regression model. This paper provides conditions which ensure the asymptotic normality of a Sobol's index estimator evaluated through this surrogate model. This result allows for building asymptotic confidence intervals for the considered Sobol index estimator. The presented method is successfully applied on an academic example on the heat equation.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00828596
Contributeur : Loic Le Gratiet <>
Soumis le : vendredi 31 mai 2013 - 13:13:27
Dernière modification le : lundi 29 mai 2017 - 14:21:55
Document(s) archivé(s) le : dimanche 1 septembre 2013 - 05:20:07

Fichiers

AsymptoticSobol.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00828596, version 1
  • ARXIV : 1305.7406

Collections

Citation

Loic Le Gratiet. Asymptotic normality of a Sobol index estimator in Gaussian process regression framework. 2013. 〈hal-00828596〉

Partager

Métriques

Consultations de la notice

263

Téléchargements de fichiers

121