On a conjecture about Dirac's delta representation using q-Gaussians

Abstract : Tsallis and Jauregui have recently conjectured a representation of the celebrated Dirac delta distribution, which they call $\delta_q(x)$, based on $q-$exponential functions. However, they could not prove their conjecture and used numerical experiments that suggest its validity. In this note, we provide a rigourous mathematical approach to this problem and prove their conjecture by recourse to the notion of superstatistics.
Type de document :
Article dans une revue
Journal of Mathematical Physics, American Institute of Physics (AIP), 2010, 51 (9), pp.093502
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00828456
Contributeur : Antoine Chevreuil <>
Soumis le : vendredi 31 mai 2013 - 09:56:39
Dernière modification le : mercredi 4 janvier 2017 - 16:22:43
Document(s) archivé(s) le : mardi 3 septembre 2013 - 10:20:28

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00828456, version 1

Citation

Antoine Chevreuil, Angelo Plastino, Christophe Vignat. On a conjecture about Dirac's delta representation using q-Gaussians. Journal of Mathematical Physics, American Institute of Physics (AIP), 2010, 51 (9), pp.093502. <hal-00828456>

Partager

Métriques

Consultations de
la notice

293

Téléchargements du document

165