Transient ultrasound propagation in porous media using Biot theory and fractional calculus: Application to human cancellous bone

Abstract : A temporal model based on the Biot theory is developed to describe the transient ultrasonic propagation in porous media with elastic structure, in which the viscous exchange between fluid and structure are described by fractional derivatives. The fast and slow waves obey a fractional wave equation in the time domain. The solution of Biot's equations in time depends on the Green functions of each of the waves (fast and slow), and their fractional derivatives. The reflection and transmission operators for a slab of porous materials are derived in the time domain, using calculations in the Laplace domain. Their analytical expressions, depend on Green's function of fast and slow waves. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.
Type de document :
Article dans une revue
Journal of the Acoustical Society of America, Acoustical Society of America, 2013, 133 (4), pp.1867-1881. 〈10.1121/1.4792721〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00812598
Contributeur : Erick Ogam <>
Soumis le : vendredi 12 avril 2013 - 14:41:40
Dernière modification le : mardi 17 janvier 2017 - 15:36:12

Identifiants

Collections

Citation

Mohamed Fellah, Zine El Abiddine Fellah, Farid Mitri, Erick Ogam, Claude Depollier. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: Application to human cancellous bone. Journal of the Acoustical Society of America, Acoustical Society of America, 2013, 133 (4), pp.1867-1881. 〈10.1121/1.4792721〉. 〈hal-00812598〉

Partager

Métriques

Consultations de la notice

167