On set-based local search for multiobjective combinatorial optimization

Abstract : In this paper, we formalize a multiobjective local search paradigm by combining set-based multiobjective optimization and neighborhood-based search principles. Approximating the Pareto set of a multiobjective optimization problem has been recently defined as a set problem, in which the search space is made of all feasible solution-sets. We here introduce a general set-based local search algorithm, explicitly based on a set-domain search space, evaluation function, and neighborhood relation. Different classes of set-domain neighborhood structures are proposed, each one leading to a different set-based local search variant. The corresponding methodology generalizes and unifies a large number of existing approaches for multiobjective optimization. Preliminary experiments on multiobjective NK-landscapes with objective correlation validates the ability of the set-based local search principles. Moreover, our investigations shed the light to further research on the efficient exploration of large-size set-domain neighborhood structures.
Type de document :
Communication dans un congrès
Genetic and Evolutionary Computation Conference (GECCO 2013), 2013, Amsterdam, Netherlands. pp.471-478, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00805166
Contributeur : Arnaud Liefooghe <>
Soumis le : mercredi 27 mars 2013 - 11:38:59
Dernière modification le : samedi 16 janvier 2016 - 01:09:51

Identifiants

  • HAL Id : hal-00805166, version 1

Citation

Matthieu Basseur, Adrien Goëffon, Arnaud Liefooghe, Sébastien Verel. On set-based local search for multiobjective combinatorial optimization. Genetic and Evolutionary Computation Conference (GECCO 2013), 2013, Amsterdam, Netherlands. pp.471-478, 2013. <hal-00805166>

Partager

Métriques

Consultations de la notice

397