Systèmes hamiltoniens à ports de dimension infinie : réduction et propriétés spectrales.

Abstract : Dans ce papier on s'intéresse aux propriétés spectrales des systèmes hamiltoniens à ports de dimension infinie. On montre que le spectre de tels systèmes peut être déduit du spectre associé à une structure canonique, la structure de Stokes-Dirac, à l'aide de transformations géométriques simples telles que des homothéties, translations ou dilatations. On montrera en particulier que les spectres des systèmes d'équations d'onde et de diffusion peuvent être déduits du même spectre canonique. Enfin on étudiera les propriétés de convergence d'une méthode de réduction structurée de type éléments finis mixtes sur une problème de diffusion. Pour cela on montrera la convergence du spectre de la structure réduite vers le spectre de la structure canonique de Stokes-Dirac, puis on en déduira les propriétés de convergence finale par transformation géométrique. ABSTRACT. This paper deals with spectral properties of infinite dimensional Port Hamiltonian systems. It is shown that the spectra of these systems can be deduced from the spectrum associated to a canonical structure, the Stokes Dirac structure, thanks to geometric transformations such as homothety, translations or dilations. In particular, it is shown that the spectrum of the wave equation system and of the diffusion system can be deduced from the same canonical spectrum. Finally the spectral convergence properties of a mixed finite element based spatial reduction methods is studied of a diffusion system. To this purpose, the convergence of the spectrum of the reduced structure to the spectrum of the canonical Stoke Dirac structure is proved. It is obtained from the convergence properties of the canonical structure through geometric transformations.
Type de document :
Article dans une revue
Journal Européen des Systèmes Automatisés (JESA), Lavoisier, 2011, 45 (7-10), pp.645-664
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00803331
Contributeur : Martine Azema <>
Soumis le : jeudi 21 mars 2013 - 16:30:36
Dernière modification le : jeudi 7 février 2019 - 17:26:18
Document(s) archivé(s) le : dimanche 2 avril 2017 - 18:28:29

Fichier

LeGorrec_et_al_JESA2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00803331, version 1

Citation

Yann Le Gorrec, Hui Peng, Laurent Lefèvre, Boussag Hamroun, Françoise Couenne. Systèmes hamiltoniens à ports de dimension infinie : réduction et propriétés spectrales.. Journal Européen des Systèmes Automatisés (JESA), Lavoisier, 2011, 45 (7-10), pp.645-664. 〈hal-00803331〉

Partager

Métriques

Consultations de la notice

297

Téléchargements de fichiers

1107