A second-order differential system with hessian-driven damping; application to non-elastic shock laws

Abstract : We consider a second-order differential system with Hessian-driven damping . An interesting property of this system is that, after introduction of an auxiliary variable y , it can be equivalently written as a first-order system in time and space. This allows us to extend the analysis to the case of a convex lower semicontinuous potential and so to introduce constraints in the model. When considering the indicator function of a closed convex set, the subdifferential operator takes account of the contact forces. In this setting, by playing with the geometrical damping parameter, we can describe nonelastic shock laws with restitution coefficient. Taking advantage of the infinite dimensional framework, we introduce a nonlinear hyperbolic PDE describing a damped oscillating system with obstacle. The system is dissipative; in the convex case each trajectory weakly converges to a minimizer of the global potential energy function. Exponential stabilization is obtained under strong convexity assumptions.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [32 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00803214
Contributor : Hedy Attouch <>
Submitted on : Thursday, March 21, 2013 - 1:17:38 PM
Last modification on : Wednesday, July 18, 2018 - 8:11:27 PM
Document(s) archivé(s) le : Saturday, June 22, 2013 - 4:55:08 AM

File

Attouch-Mainge-Redont-30August...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00803214, version 1

Citation

Hedy Attouch, Paul-Emile Maingé, Patrick Redont. A second-order differential system with hessian-driven damping; application to non-elastic shock laws. Differential Equations & Applications, 2012, 4 (1), pp.27-65. ⟨hal-00803214⟩

Share

Metrics

Record views

444

Files downloads

273