A second-order differential system with hessian-driven damping; application to non-elastic shock laws

Abstract : We consider a second-order differential system with Hessian-driven damping . An interesting property of this system is that, after introduction of an auxiliary variable y , it can be equivalently written as a first-order system in time and space. This allows us to extend the analysis to the case of a convex lower semicontinuous potential and so to introduce constraints in the model. When considering the indicator function of a closed convex set, the subdifferential operator takes account of the contact forces. In this setting, by playing with the geometrical damping parameter, we can describe nonelastic shock laws with restitution coefficient. Taking advantage of the infinite dimensional framework, we introduce a nonlinear hyperbolic PDE describing a damped oscillating system with obstacle. The system is dissipative; in the convex case each trajectory weakly converges to a minimizer of the global potential energy function. Exponential stabilization is obtained under strong convexity assumptions.
Type de document :
Article dans une revue
Differential Equations & Applications, 2012, 4 (1), pp.27-65
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00803214
Contributeur : Hedy Attouch <>
Soumis le : jeudi 21 mars 2013 - 13:17:38
Dernière modification le : lundi 21 mars 2016 - 17:36:50
Document(s) archivé(s) le : samedi 22 juin 2013 - 04:55:08

Fichier

Attouch-Mainge-Redont-30August...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00803214, version 1

Citation

Hedy Attouch, Paul-Emile Maingé, Patrick Redont. A second-order differential system with hessian-driven damping; application to non-elastic shock laws. Differential Equations & Applications, 2012, 4 (1), pp.27-65. <hal-00803214>

Partager

Métriques

Consultations de
la notice

267

Téléchargements du document

134