A quasi-linear algorithm to compute the tree of shapes of n-D images

Abstract : To compute the morphological self-dual representation of images, namely the tree of shapes, the state-of-the-art algorithms do not have a satisfactory time complexity. Furthermore the proposed algorithms are only effective for 2D images and they are far from being simple to implement. That is really penalizing since a self-dual representation of images is a structure that gives rise to many powerful operators and applications, and that could be very useful for 3D images. In this paper we propose a simple-to-write algorithm to compute the tree of shapes; it works for \nD images and has a quasi-linear complexity when data quantization is low, typically 12~bits or less. To get that result, this paper introduces a novel representation of images that has some amazing properties of continuity, while remaining discrete.
Type de document :
Communication dans un congrès
C.L. Luengo Hendriks, G. Borgefors, R. Strand. International Symposium on Mathematical Morphology, May 2013, Uppsala, Sweden. Springer, 7883, pp.97-108, 2013, Lecture Notes in Computer Science
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00798620
Contributeur : Laurent Najman <>
Soumis le : samedi 9 mars 2013 - 18:02:55
Dernière modification le : vendredi 12 juillet 2013 - 18:15:47
Document(s) archivé(s) le : dimanche 2 avril 2017 - 10:48:14

Fichier

geraud.2013.ismm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00798620, version 1

Citation

Thierry Géraud, Edwin Carlinet, Sébastien Crozet, Laurent Najman. A quasi-linear algorithm to compute the tree of shapes of n-D images. C.L. Luengo Hendriks, G. Borgefors, R. Strand. International Symposium on Mathematical Morphology, May 2013, Uppsala, Sweden. Springer, 7883, pp.97-108, 2013, Lecture Notes in Computer Science. <hal-00798620>

Partager

Métriques

Consultations de
la notice

391

Téléchargements du document

596