]An end-to-end construction for singly periodic minimal surfaces

Abstract : We construct families of properly embedded singly periodic minimal surfaces in R^3 with Scherk-type ends and arbitrary finite genus in the quotient. The construction follows by gluing small perturbations of pieces of already known minimal surfaces: Scherk minimal surfaces, Costa - Hoffman - Meeks surfaces and KMR examples.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00796856
Contributor : Laurent Hauswirth <>
Submitted on : Tuesday, March 5, 2013 - 11:04:53 AM
Last modification on : Friday, July 19, 2019 - 1:24:30 AM

Identifiers

  • HAL Id : hal-00796856, version 1

Citation

Laurent Hauswirth, Filippo Morabito, Magdalena Rodriguez Pérez. ]An end-to-end construction for singly periodic minimal surfaces. Pacific Journal of Mathematics, 2009, 241 (1), pp.1-63. ⟨hal-00796856⟩

Share

Metrics

Record views

206