Analysis of human skin hyper-spectral images by non-negative matrix factorization

Abstract : This article presents the use of Non-negative Matrix Factorization, a blind source separation algorithm, for the decomposition of human skin absorption spectra in its main pigments: melanin and hemoglobin. The evaluated spectra come from a Hyper-Spectral Image, which is the result of the processing of a Multi-Spectral Image by a neural network-based algorithm. The implemented source separation algorithm is based on a multiplicative coeffi cient upload. The goal is to represent a given spectrum as the weighted sum of two spectral components. The resulting weighted coefficients are used to quantify melanin and hemoglobin content in the given spectra. Results present a degree of correlation higher than 90% compared to theoretical hemoglobin and melanin spectra. This methodology is validated on 35 melasma lesions from a population of 10 subjects.
Type de document :
Communication dans un congrès
Springer. 10th Mexican International Conference on Artificial Intelligence, Nov 2011, Puebla, Mexico. Part. II (LNAI 7095), pp.431-442, 2011
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00790466
Contributeur : Franck Marzani <>
Soumis le : mercredi 20 février 2013 - 15:37:28
Dernière modification le : mercredi 15 janvier 2014 - 17:06:14
Document(s) archivé(s) le : mardi 21 mai 2013 - 09:25:09

Fichier

Paper21.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00790466, version 1

Collections

Citation

July A Galeano Z, Romuald Jolivot, Franck Marzani. Analysis of human skin hyper-spectral images by non-negative matrix factorization. Springer. 10th Mexican International Conference on Artificial Intelligence, Nov 2011, Puebla, Mexico. Part. II (LNAI 7095), pp.431-442, 2011. <hal-00790466>

Partager

Métriques

Consultations de
la notice

228

Téléchargements du document

538