A Majorize-Minimize subspace approach for l2-l0 image regularization

Abstract : In this work, we consider a class of differentiable criteria for sparse image computing problems, where a non-convex regularization is applied to an arbitrary linear transform of the target image. As special cases, it includes edge preserving measures or frame analysis potentials commonly used in image processing. As shown by our asymptotic results, the l2-l0 penalties we consider may be employed to provide approximate solutions to l0-penalized optimization problems. One of the advantages of the proposed approach is that it allows us to derive an efficient Majorize-Minimize subspace algorithm. The convergence of the algorithm is investigated by using recent results in non-convex optimization. The fast convergence properties of the proposed optimization method are illustrated through image processing examples. In particular, its effectiveness is demonstrated on several data recovery problems.
Type de document :
Article dans une revue
Siam Journal of Imaging Science, siam, 2013, 6 (1), pp.563-591
Liste complète des métadonnées

Contributeur : Emilie Chouzenoux <>
Soumis le : mardi 19 février 2013 - 10:31:30
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48


  • HAL Id : hal-00789962, version 1
  • ARXIV : 1112.6272


Emilie Chouzenoux, Anna Jezierska, Jean-Christophe Pesquet, Hugues Talbot. A Majorize-Minimize subspace approach for l2-l0 image regularization. Siam Journal of Imaging Science, siam, 2013, 6 (1), pp.563-591. <hal-00789962>



Consultations de la notice