Low order approximation of the spherical nonreflecting boundary kernel for the wave equation

Jing-Rebecca Li 1
1 DeFI - Shape reconstruction and identification
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7641
Abstract : We find low order approximations to the spherical nonreflecting boundary kernel for the wave equation in three dimensions. First we express the Laplace transform of the kernel as a rational function by solving for the zeros of a modified Bessel function. Then we formulate a linear time-invariant dynamical system whose transfer function is this rational function. Finally we use the Balanced Truncation method to generate loworder approximations.We compare our approach with a direct L2 minimization approach where a rational approximation is expressed as the ratio of two polynomials.
Type de document :
Article dans une revue
Linear Algebra and its Applications, Elsevier, 2003
Liste complète des métadonnées

https://hal.inria.fr/hal-00781117
Contributeur : Jing-Rebecca Li <>
Soumis le : vendredi 25 janvier 2013 - 13:37:03
Dernière modification le : jeudi 9 février 2017 - 15:05:52

Identifiants

  • HAL Id : hal-00781117, version 1

Collections

Citation

Jing-Rebecca Li. Low order approximation of the spherical nonreflecting boundary kernel for the wave equation. Linear Algebra and its Applications, Elsevier, 2003. 〈hal-00781117〉

Partager

Métriques

Consultations de la notice

189