The convex class of realisable unit covariances

Abstract : This paper concerns the characterisation of second order marginals for random sets in a discrete setting. Under the instance of unit covariances, this problem possesses a combinatorial symmetry, exploited jointly in the companion paper to give a heuristic procedure to check realisability. In particular we disprove Matheron's conjecture, and explicit partially the structure of the convex body formed by realisable unit covariances in a finite set.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [17 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00777854
Contributor : Raphael Lachieze-Rey <>
Submitted on : Friday, January 18, 2013 - 11:34:08 AM
Last modification on : Friday, September 20, 2019 - 4:34:03 PM
Long-term archiving on: Friday, April 19, 2013 - 4:02:03 AM

Files

unitcovariances2.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00777854, version 1
  • ARXIV : 1301.4402

Collections

Citation

Raphaël Lachièze-Rey. The convex class of realisable unit covariances. 2013. ⟨hal-00777854⟩

Share

Metrics

Record views

183

Files downloads

102