Hardy-Littlewood series and even continued fractions

Abstract : For any $s\in (1/2,1]$, the series$F_s(x)=\sum_{n=1}^{\infty} e^{i\pi n^2 x}/n^s$ converges almost everywhere on $[-1,1]$ by a result of Hardy-Littlewood, but not everywhere. However, there does not yet exist an intrinsic description of the set of convergence for $F_s$. In this paper, we define in terms of even or regular continued fractions certain subsets of points of $[-1,1]$ of full measure where the series converges. Our method is based on an approximate function equation for $F_s(x)$. As a by-product, we obtain the convergence of certain series defined in term of the convergents of the even continued fraction of an irrational number.
Type de document :
Article dans une revue
Journal d'analyse mathématique, Springer, 2015, 125, pp.175-225. 〈10.1007/s11854-015-006-4〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00756399
Contributeur : Tanguy Rivoal <>
Soumis le : jeudi 22 novembre 2012 - 23:08:48
Dernière modification le : jeudi 8 mars 2018 - 09:30:24
Document(s) archivé(s) le : samedi 23 février 2013 - 03:47:05

Fichiers

rivseudef.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Tanguy Rivoal, Stéphane Seuret. Hardy-Littlewood series and even continued fractions. Journal d'analyse mathématique, Springer, 2015, 125, pp.175-225. 〈10.1007/s11854-015-006-4〉. 〈hal-00756399〉

Partager

Métriques

Consultations de la notice

262

Téléchargements de fichiers

100